Q.P. Code - 50721

Second Year B.Sc. Degree Examination, OCTOBER/NOVEMBER 2016 (Directorate of Distance Education)

Physics

(DSB 210) Paper II – SOUND, OPTICS, ELECTRICITY AND ELECTROMAGNETISM

Time : 3 Hours] [Max. Marks : 75/85

Instructions to Candidates:

- 1) Students who have attended **25** marks **I-A** Scheme will have to answer for total of **75** marks.
- 2) Students who have attended **15** marks **I-A** Scheme will have to answer for total of **85** marks.
- 3) Section **E** is **compulsory** for **85**-marks scheme only.

SECTION - A

I. Answer ALL questions:

 $10 \times 1 = 10$

- 1. State Stoke's theorem.
- 2. Define the time constant of RC circuit.
- 3. What is the Q value of a resonant circuit?
- 4. Write the expression for velocity of electromagnetic waves in a free space.
- 5. State Brewster's law.
- 6. What is meant by half period zone?
- 7. What are coherent sources?
- 8. Why thunder is heard after seeing the flash of lightening?
- 9. What is the main cause of damping in B.G.?
- 10. Define reactance of an inductor.

SECTION - B

II. Answer any FIVE Questions:

 $5 \times 3 = 15$

- 11. Derive the differential equation of one dimensional progressive wave.
- 12. Explain the reflection of a spherical wave front at a plane surface.

1 **P.T.O.**

Q.P. Code - 50721

- 13. Derive Maxwell's equation $\nabla \times \vec{H} = \vec{J}$ using Ampere's circuital law.
- 14. Explain (a) curl of a gradient is always zero and (b) divergence of a curl is always zero.
- 15. The polarizing angle for a glass is 57°24'. Calculate the refractive index for glass.
- 16. Describe the Fresnel biprism method for the determination of wavelength of light.
- 17. Distinguish between Huygen's eye piece and Ramsden's eye piece.

SECTION - C

III. Answer any FIVE Questions:

 $5 \times 6 = 30$

- 18. Derive an expression for current and impedance in an LCR series circuit fed with alternating e.m.f. by 'j' operator method.
- 19. State and prove Maximum power transfer theorem for DC circuits.
- 20. What is peak inverse voltage? Describe the working of full wave rectifier using centre tap transformer.
- 21. Give the theory of Ballistic Galvanometer.
- 22. State Ampere's circuital law. Use this law to find the magnetic field at the axis of a long solenoid having 'n' turns per unit length and carrying a current 'l'.
- 23. Give the theory of Zone plate.
- 24. What is forced oscillation? Derive the differential equation for forced oscillation.

SECTION - D

IV. Answer any TWO Questions:

 $2 \times 10 = 20$

- 25. (a) What are beats? Discuss the theory of beats.
 - (b) Shock absorber of a car of mass 1000 kg sinks through 2.8 cm when a person of 980 N sits in car. When car hits a hump, it oscillates in SHM. Find frequency of SHM.

 6 + 4
- 26. (a) Give the theory of interference of light in thin films considering the reflected rays.
 - (b) The distance between the two coherent sources in 1 mm and the screen in 1 m away from the sources. The second dark band is 0.1 sm from the central bright fringe. Find the distance of the second bright fringe from the central bright fringe.
 6 + 4

Q.P. Code - 50721

- 27. (a) Give the Huygen's theory of double refraction.
 - (b) A uniform magnetic field of magnitude 1.5 Weber per meter square, points horizontally. A proton of energy 5 MeV moves vertically downwards through this field. Calculate the force on it.

 6 + 4
- 28. (a) Write down Maxwell's field equations and deduce the electromagnetic wave equation there from.
 - (b) The transformer used in the half wave rectifier has a turn ratio of 20: 1. The primary of the transformer is connected to AC main of 240 V. Assuming forward diode resistance to zero, calculate the DC voltage across the load. **6 + 4**

SECTION - E

V. Answer any ONE of the following questions:

 $1 \times 10 = 10$

(Compulsory Question for 85 marks scheme only)

- 29. (a) Give the theory of Newton's Rings.
 - (b) The average power radiated by a broadcasting station is 8 kW. Assume the power to be radiated over the surface of a hemisphere of radius 10 km with the station at its centre. Calculate the magnitude of the Poynting vector on the surface of the hemisphere.
 6 + 4
- 30. (a) Discuss the theory of diffraction of light by plane transmission grating for normal incidence.
 - (b) If a potential function $\vec{V} = -\beta xy$, obtain the value of electric field where β is a constant.