Second Year B.Sc. Degree Examinations December 2017

(Directorate of Distance Education)

MATHEMATICS

Paper - II: DSB 230: Mathematics

Time: 3 hrs|

[Max. Marks: 90

Instructions to candidates:

Answer any **SIX** full questions of the following choosing at least one from each part.

PART – A

1. a) i) Find order and degree of the differential equation $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 4x^2$

ii) Solve
$$2 \cdot \frac{dy}{dx} = \frac{y(x+1)}{x}$$
 (2+2)

b) Solve
$$(x-2y)dx + x.dy = 0$$
 (5)

c) Solve
$$\cos(x)y' + \sin(x)y = 2\cos^3 x \sin x - 1$$
, given $y(\frac{\pi}{4}) = 3\sqrt{2}, \ 0 \le x \le \frac{\pi}{2}$ (6)

2. a) i) Solve
$$p^2 + 3p - 4 = 0$$

ii) Find general and singular solution of $y = px + p - p^2$ (2 + 2)

b) Solve $y = 3px + 6p^2y^2$ (5)

c) Find orthogonal trajectories of the family $y^2 = 4a(x+a)$, where a is a parameter.

(6)

PART – B

3. a) i) Find complementary function of $(D^3 - 3D^2 + 9D - 27)y = \cos 3x$ where

$$D = \frac{d}{dx}.$$
ii) Solve $(D^3 - 13D + 12)y = 0$ where $D = \frac{d}{dx}.$ (2+2)

b) Solve
$$(D^2 + 4) y = \sin^2 x$$
 where $D = \frac{d}{dx}$ (5)

c) Solve
$$(D^2 + 9)y = x \cdot \cos x$$
 where $D = \frac{d}{dx}$ (6)

Contd...... 2

4. a) i) Evaluate
$$\lim_{x \to 0} \frac{x \cdot e^x - \log(1 + x)}{x^2}$$
ii) Evaluate
$$\lim_{x \to 0} \tan x \cdot \log x$$
(2+2)

b) Verify Cauchy mean value theorem for the function $\sqrt{x+9}$ and \sqrt{x} in (0, 16).

(5)

c) Obtain the Maclaurins expansion of $\sin^{-1} x$ up to terms constraint x^5 . (6)

PART – C

- 5. a) i) If every element of a group G has its own inverse, then prove that G is abelian. ii) If a is a generator of a cyclic group G, so is a^{-1} . Prove if it is true. (2+2)
 - b) If a is a generator of a cyclic group G, then prove that 0(a) = 0(G) (5)
 - c) State and prove Fermat's theorem. (6)
- 6. a) i) Prove that a.0 = 0ii) For any two real numbers a and b, show that $|a+b| \le |a|+|b|$ (2+2)
 - b) If (1, 2, 3, 4) (5, 6, 7) (2, 6, 1) (4, 7) are the cycles. Find disjoint cycle and order of the disjoint cycle.
 (5)

c) Find envelope of family of curves $y = mx + \sqrt{a^2m^2 + b^2}$ where *m* is a parameter. (6)

PART – D

- 7. a) i) Find the limit of the sequence $\sqrt{n} \left(\sqrt{n+4} \sqrt{n}\right)$
 - ii) Verify whether n^{th} term of the sequence $\frac{\log n}{n}$ is convergent or not (2+2)
 - b) Prove that monotonic decreasing sequence bounded below is convergent. (5)
 - c) Prove that limit of a convergent sequence is unique. (6)
- 8. a) i) Discuss the convergence of the series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$

ii) Show that
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$
 is convergent (2 + 2)

b) State and prove D'Alemberts Ratio test (5)

c) Find the sum to infinity
$$\frac{2(3)}{3!} + \frac{3(5)}{4!} + \frac{4(7)}{5!} + \dots \infty$$
 (6)

* * * * * * *